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Abstract: High-throughput, massively parallel sequence analysis has revolutionized the way
that researchers design and execute scientific investigations. Vast amounts of sequence data
can be generated in short periods of time. Regarding ophthalmology and vision research,
extensive interrogation of patient samples for underlying causative DNA mutations has resulted
in the discovery of many new genes relevant to eye disease. However, such analysis remains
functionally limited. RNA-sequencing accurately snapshots thousands of genes, capturing
many subtypes of RNA molecules, and has become the gold standard for transcriptome gene
expression quantification. RNA-sequencing has the potential to advance our understanding of
eye development and disease; it can reveal new candidates to improve our molecular diagnosis
rates and highlight therapeutic targets for intervention. But with a wide range of applications,
the design of such experiments can be problematic, no single optimal pipeline exists, and
therefore, several considerations must be undertaken for optimal study design. We review the
key steps involved in RNA-sequencing experimental design and the downstream bioinformatic
pipelines used for differential gene expression. We provide guidance on the application of RNA-
sequencing to ophthalmology and sources of open-access eye-related data sets.
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Introduction

With the advent of high-throughput sequencing
technologies, focus on temporal gene expression
through examination of the active transcriptome of
tissues, cells, and model systems using RNA-
sequencing (RNA-seq) has increased.! In ophthal-
mology and vision research, RNA-seq utilization is
extensive. For example, investigation of gene
expression changes in corneal epithelial tissue from
keratoconus patients has provided insights into the
cause of this progressive corneal degeneration.?
Pathways including Wnt, Hedgehog, and Notchl
signaling were shown to be significantly reduced in
keratoconus epithelium. In glaucoma, the leading
cause of irreversible blindness worldwide charac-
terized by the progressive loss of retinal ganglion
cells (RGCs),>* investigations into the RGC tran-
scriptome of induced pluripotent stem cells (iPSCs)
from patients with the SIX6 risk allele [missense

variant rs33912345; C>A; p.(His141Asn)] associ-
ated with reduced retinal nerve fiber layer thick-
ness, and mouse models of optic nerve head
damage have identified critical pathophysiologic
pathways, such as endoplasmic reticulum stress,
Notch signaling, and mammalian target of rapamy-
cin (mTOR) pathway.>7 Elucidation of transcript
signatures in lens development has revealed the
expression of novel transcripts decreasing in post-
natal tissue.® Lens-enriched expression analysis has
confirmed high expression of established cataract-
linked genes, such as the Crystallin gene family, and
identified a number of transcription factors as novel
potential regulators in the lens.® RNA-seq of rod
photoreceptors from the zebrafish has identified
novel expression of genes not previously thought to
be expressed in this cell type including opsin 4.1
and several nuclear hormone receptor genes.!?
Similar experiments on dissociated mouse cones
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Figure 1. A diagrammatic overview of the considerations for designing a successful RNA-seq experiment for
differential gene expression analysis. Branches of the outline are numbered to indicate the general order for
the considerations. Within each branch, subbranches denote options to consider within the design.

have provided an insight into the gene expression
patterns occurring throughout postnatal develop-
ment, highlighting 14% of all genes detected were
switched off around postnatal day 6 (P6), including
those encoding transcription factors, neurogenesis,
and cone-specific genes.!! Such investigations
reveal the role of previously unknown or unclassi-
fied transcripts in eye development, for example,
the characterization of zebrafish zic2, which restricts
pax2a expression and Hedgehog signaling, when
ablated causes chorioretinal coloboma!? and identi-
fication of numerous miRNAs regulating pathways
not previously associated with retinal degeneration,
using retinal pigment epithelium (RPE) cells under
oxidative stress as a model system.!? In this man-
ner, novel information is gleaned; new targets for
potential molecular diagnosis or therapeutic inter-
ventions may emerge.'415> In this review, we will
cover the considerations for the design and execu-
tion of a typical RNA-seq project investigating dif-
ferentially expressed messenger RNA (mRNA).
We will provide recent examples of the utilization
of RNA-seq within the field of ophthalmology.

Considerations for RNA-seq experimental
design

With no single optimal pipeline for this experi-
mentation, combined with no standard applica-
tion and analysis approach, the use of RNA-seq

data can be daunting. Experimental plan and stra-
tegic approaches depend highly on the type of
RNA and or organism being studied, as well as the
goals of the research. One may utilize previously
reported species transcriptomes to guide the align-
ment of reads or align without prior knowledge to
identify potentially novel transcripts.

One of the most crucial requirements for a suc-
cessful RNA-seq experiment is the biological ques-
tion of interest and how the data generated can
answer that. Figure 1 summarizes critical aspects
for an optimal experimental design. Number of
sample replicates is of importance as increasing the
number per biological condition has a more signifi-
cant impact on the accuracy of the data produced
over increasing sequencing depth.!%17 A growing
number of algorithms can calculate the required
sample number for significance and power of
experiments; including Scotty,!® powsimR,!?
PROPER,2% and RNASeqPower.2! Technical rep-
licates are generally not required for differential
expression analysis, as RNA-seq has been shown
to be accurate as well as reproducible.22-24

For pilot studies to assess accuracy and variance
of analysis at different stages of an RNA-seq pipe-
line, simulated data can be created through syn-
theticreads generated from genomic sequence.?5:26
It is also possible to utilize transcriptomic data
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submitted to public repositories, such as EMBL
ENAZ27 and National Center for Biotechnology
Information (NCBI) SRA,?® to obtain informa-
tion on the variance of data. Table 1 summarizes
the current obtainable experimental RNA-seq
data sets related to ophthalmology and vision
research at NCBI. Combination of data with
published data sets from different biological sam-
ples, sequencing centers, or varying experimental
protocols may lead to incorporation of batch
effects. Such meta-analysis, therefore, would have
decreased statistical power and accuracy, even in
well-designed studies.>* A significant source of
false discovery of differential expression is com-
monly across batches of experiments rather than
across the biological groups of interest.>>

RNA isolation

Within our cells, several RNA species are present
at any one time serving differing roles. Through
transcription of genes, there are protein-encoding
mRNAs. Small RNAs involved in translation
include transfer RNAs (tRNAs) and ribosomal
RNAs (rRNAs). Regulatory RNA species, include
antisense RNAs (asRNAs), microRNAs (miR-
NAs), Piwi-interacting RNAs (piRNAs), small
interfering RNAs (siRNAs), short hairpin RNA
(shRNA), and long noncoding RNA (IncRNA),
all play a role in gene expression regulation.
Highly abundant rRNA species, the predominant
component of the ribosome involved in protein
synthesis, constitutes up to 90% of the total RNA
in cells. rRNA may require removal from samples
to produce a library with considerably more rep-
resentation of mRNA transcripts. Methods for
rRNA removal include enriching mRNA using
poly(A) selection, targeting the polyadenosine
monophosphates at the 3’ tail of mature mRNA
species, or depletion of rRNA by systems such as
Ribo-Zero (Illumina, CA, USA) and duplex-spe-
cific nuclease degradation.’® rRNA depletion is
an essential consideration for formalin-fixed and
paraffin-embedded (FFPE) samples where RNAs
are potentially degraded to a small average size,
under 200 nucleotides.5” rRNA depletion should
also be considered when the biological sample
cannot provide enough quantity or high-quality
mRNA through poly(A) selection.?83° For sam-
ples with a small amount of starting material,
there are specific library preparation systems
available, such as SMART-seq (Takara Bio, CA,
USA), relying on pre-amplification of fragments
and may include a second stage of amplifica-
tion.%% This can result in variable 3’ end bias

representation of genes in library preparation,
although the overall effect on expression values
may be negligible.®! Small RNA species, such as
those lacking poly(A) signals, can be assessed
through small RNA-seq protocols.52

Library preparation and platforms

To convert RNA into a library of molecules for
sequencing, generally, it is first fragmented to an
appropriate size for the chosen platform, either by
physical or enzymatic approaches. First-strand
complementary DNA (cDNA) is synthesized
from the RNA sequences. Dependent on the plat-
form and library kit used, platform-specific
adapter sequences may be incorporated to the
ends of the molecules to enable subsequent
sequencing. Some systems add adapter sequences
through ligation after cDNA synthesis (including
Illumina TruSeq, Takara Clontech SMARTer,
PerkinElmer NEXTflex, and KAPA Biosystems);
other sequences may be attached to each mole-
cule, including an inline index to identify the
sample, allowing multiplexing of libraries when
sequencing. Inline barcodes can be utilized to
provide a label of origin for each RNA molecule.%3
Recent developments include unique molecular
identifiers (UMIs), molecular tags consisting of
several random bases that can be used to detect
and quantify unique transcripts.®3% Unwanted
duplication of reads through amplification meth-
ods can readily be detected.®®-%7 The addition of
UMISs significantly improves the accuracy of gene
quantification,  especially high  expressing
genes.%:%9 The resulting library of cDNA mole-
cules can then be assessed for quality before
sequencing.

For library preparation, one must consider how
much RNA will be available for the experiment as
well as the specific library types required, for
example, those that maintain strand information
or need significantly lower input RNA levels, such
as those from FFPE or laser-captured micro-dis-
sected samples,’® and single-cell RNA-seq
(scRNA-seq).”! Strand-specific RNA-seq can
resolve the ambiguity of overlapping genes tran-
scribed on opposite strands, allowing identifica-
tion of antisense expression by retaining
information from which DNA strand the RNA
was first transcribed.”? This information can be
maintained using approaches that either incorpo-
rate a chemical modification in the second cDNA
synthesis stage, with subsequent digestion of the
nonmodified strand, or incorporate distinct
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Figure 2. Schematic representation of typical bioinformatic processing of high-throughput sequence data

for RNA-seq experiments. The sequencing platform generated raw reads (FASTQ) are subjected to quality
assessment. Where a reference genome and a high-quality annotation are available, resulting high-quality
cleaned reads can be used in alignment- or pseudo-alignment-based processes. For alignment-based
process, reads are mapped to the genome and transcriptome in a splice-aware manner. Resulting alignments
(SAM/BAM/CRAM] are assessed for mapping qualities and counts of features (genes/transcripts/exons)
generated. Counts are modeled for quantification and differential analysis computed using various methods,
resulting in differential feature lists. With pseudo-alignment-based methods, clean reads are modeled to the
transcriptome, allowing direct quantification of appropriate feature(s) for differential analysis. The output of
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Figure 2. (Continued)

both approaches can provide further insight through gene ontology analysis (GSEA/GO ORA), pathway analysis
(Panther, KEGG, DAVIDJ, and visualized (IGV, GenomeBrowse, Bioconductor) for report production. Software

examples listed are non-exhaustive.

DAVID, Database for Annotation, Visualization, and Integrated Discovery; GO, gene ontology; GSEA, gene set enrichment
analysis; IGV, Integrative Genomics Viewer; KEGG, Kyoto Encyclopedia of Genes and Genomes; ORA, over-representation
analysis; Panther, Protein Analysis Through Evolutionary Relationships; SAM/BAM, sequence/binary alignment map.

primer adapters with the RNA.7374 Library prep-
aration protocols differ to achieve specific goals;
TruSeq™ (Illumina) is a general method chosen
when starting material is not restricted; Smart-
Seq2 and Ovation (NuGen, CA, USA) are suited
to low input amounts.%0:70:75

High-throughput sequencing approaches are rap-
idly evolving regarding both technology and
chemistry. Illumina, PacBio RS, Oxford
Nanopore, and Ion Torrent are some of the most
commonly utilized platforms.”®77 The Illumina
short read ‘sequence-by-synthesis’ systems have
been rapidly adopted by the research community
due to high data throughput, accuracy, availabil-
ity, and declining costs.

Sequencing

Sequencing depth, the number of fragments
sequenced per sample, remains a critical factor
for RNA-seq design. Studies have reported that
increasing reads does not always provide increased
biological significance.!%17 However, detection of
lower abundance RNA species requires increased
read sequencing, although RNA-seq shows a
greater dynamic range than other assays.”®79 For
the analysis of differential gene expression alone
in human samples, 10-20 million reads per sam-
ple would provide significant information on
most genes expressed. Investigation of alterna-
tively spliced, novel isoforms, or fusion events,
will require higher read number to capture the
expression patterns, although increasing reads are
associated with increased noise.!”

With the depth of sequencing and library con-
struction, comes the considerations of single-end
reads or paired-end reads and read length. cDNA
products may be sequenced from either single or
both ends (paired). For simple differential
expression analysis, single-end reads can provide
valuable information. Paired-end reads, due to
the size of RNA fragments produced (typically
300-500 nucleotides), will provide more

significant information as the number of reads
from fragments spanning exon—intron bounda-
ries will be higher. As RNA-seq investigates tran-
scribed and processed RNA, it is crucial that a
level of aligned reads or paired-end fragments
span exon boundaries. Single-end reads can be
utilized for analysis of the 3’ regions of tran-
scripts, such as with Tag-seq and MACE, assum-
ing expression as a whole from sequencing the
end region only.8°

There are several biases in the analysis of RNA-
seq differential expression: low-level transcripts
producing high significance in expression-level
differences and longer more abundant tran-
scripts showing greater significance due to large
number of reads per library aligned to their ref-
erence sequence. Read length is highly depend-
ent on the application; for gene expression,
profiling short reads (50-75 basepairs, bp) will
detect the majority of RNA species in a library;
for analysis of the transcriptome including iden-
tification of novel annotations, paired-end reads
of 100+ bp will enable complete coverage of
transcripts and novel splice sites; and for small
RNA analysis, a read length of 50 bp would pro-
vide coverage of the majority of RNA due to
their size. Long read sequencing is also possible
using systems including PacBio and Oxford
Nanopore, providing detailed analysis of specific
isoforms expressed as well as allele-specific
expression patterns, allowing the development
of personalized transcriptomes.8!

RNA-seq analysis at the mRNA level

Commonly, RNA-seq experiments investigating
differential gene expression follow the stages out-
lined in Figure 2. Once sequencing data are gen-
erated, it requires alignment to either the genome
or transcriptome reference sequences. In situa-
tions where novel transcripts are of interest, align-
ment to the genome followed by de novo transcript
assembly is required. After alignment, feature
counts are calculated and normalized, and
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differentially expressed features are identified.
How these changes are biologically relevant to the
experimental hypothesis is the final stage of
investigation.

There are an increasing number of tools and
methods of analysis for RNA-seq data sets, with
each stage of the study requiring appropriate
quality control. Aside from command-line tools
and cloud-based approaches, commercial prod-
ucts include CLC Genomics Workbench (Qiagen,
CA, USA), DNAnexus, Ingenuity IPA (Qiagen),
and Partek Genomics Suite. Software for differ-
ential expression analysis has been evaluated
using both experimental and simulated data sets.
Comprehensive reports of such tools have been
presented previously.82-85  Combination of
approaches using different tools has led to
improved results.8¢ Therefore, it is recommended
to utilize multiple pipelines on the data set and
understand fully the differences and similarities in
the results. For this review, we will focus on sev-
eral commonly cited, free, open-source tools to
achieve differential expression analysis of human
samples. The tools mentioned are not intended as
an extensive list.

Read quality control

The Illumina sequencing platform will produce
raw FASTQ files that represent the sequence of
the library in question. FASTQ is a text-based file
format including all the sequence data along with
associated quality scores. Each Phred score repre-
sents a log-scaled estimated probability of error in
the base being called, for example, a score of 30
indicates a 1 in 1000 probability that the base is
incorrect. Initial processing of these read files
should include quality assessment of the base
calls using tools such as FASTQC?” or FASTX-
Toolkit.88 These provide graphical summaries of
the sample reads, allowing quick visual identifica-
tion of potential problems. Issues may commonly
include over-represented sequences (e.g. adapter
sequences or rRNA) or low-quality scoring bases
at the 3’ end of reads. Tools to process the reads,
filtering of poor bases, and trimming bases and
adapters include Trimmomatic,®® Trim Galore,?°
and cutadapt.®!

Read alignment

Post-processing of the cleaned FASTQ reads
requires either alignment to the human genome,
such as Ensembl GRCh38 or NCBI hg38 builds,

or the associated human transcriptome or
pseudo-alignment to the transcriptome and
count modeling with tools such as Salmon,?2
Kallisto,3 and Sailfish.%% Alignment of reads
requires software that can process mapping in a
splice-aware manner.%5-°¢ Many reads generated
will span splice junction coordinates, and align-
ment will require algorithms to split reads to dif-
ferent exonic positions. Mapping software
includes HISAT2,7 SOAPsplice,’® TopHat2,%°
and STAR.190 These produce a sequence/binary
alignment map (SAM/BAM!) file of the reads
aligned to the genome. Alignments may be visu-
alized using tools such as Integrative Genomics
Viewer (IGV)102:103 or GenomeBrowse,!%¢ pro-
viding an insight to read metrics at the feature
level. One of the greatest challenges is the subse-
quent assignment of aligned reads to transcripts
they originate from to infer gene expression.
Several new generation tools have introduced
alignment-free transcript or gene quantification
methods.??% These utilize k-mer-based match-
ing to indexed transcript data sets, breaking
reads into smaller k-mers, resulting in signifi-
cantly faster analysis.®* A recent report, while
confirming different pipeline performance was
virtually identical for in vivo transcripts, demon-
strated that alignment-based approaches were
superior to alignment-free pipelines for total
RNA analysis, as both small genes and low-
expressed genes biased the accuracies of align-
ment-free approaches.105

Read duplication

Post alignment, processing of the data includes
sorting by genomic coordinates and marking
reads that can be assigned as optical or polymer-
ase chain reaction (PCR) duplicates,!06:107 ysing
tools such as Picard.!8 There is significant dis-
cussion as to whether such reads should be
removed from the analysis, as preferential ampli-
fication of cDNA fragments in the library prepa-
ration could result in a gene/isoform having an
increased level of reported expression if such
duplicated fragments were included.!9%110 Other
biases can consist of fragment GC-content,
priming of reverse transcription by random hex-
amers, and rRNA depletion methods.7%:111,112 A
common practice to handle PCR duplicates
would include removal of all but one representa-
tive read of identical sequences; however, this
assumes that all identical reads were generated
by PCR from the sample cDNA molecule.!13 If
removed, biologically significant information
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may be lost as smaller genes have reads that span
the same genomic coordinates. UMIs enable
tracking of fragments through library prepara-
tion, sequencing, and data analysis to overcome
such biases.66:114

Feature summarization

Expression levels of features, either at the gene or
transcript level, are estimated from mapped read
counts where appropriate feature annotation files
exist. There is currently no consensus approach
that is the most suitable to all situations, although
this is an area of significant recent development.8>
Initial analysis of RNA distribution through tech-
nical replicates fitted well to a Poisson distribu-
tion, in which reads map to the transcriptome in a
random  unrelated fashion  within the
library.22.115,116 \¥/ith decreasing cost and speed,
the use of higher numbers of biological replicates
demonstrated that sample variability was greater
than the expected distribution, giving increased
false positives. Subsequent methods to handle
this variability include analysis based on negative
and beta-negative binomial statistical models,
such as edgeR,!” BaySeq,!!® Cufflinks2,!19120
and DESeq2.12! Each requires an input of sample
counts per gene or transcript that can be created
with tools such as featureCounts!?2 or htseq-
count.!?23 Raw counts generated are not suitable
for comparison of expression levels. Transcript
length and library read size are primary factors
creating bias in such data. This high-dimensional
count data are, therefore, fitted to the model and
normalized by the chosen package. There are sev-
eral metrics for normalization of gene expression,
including RPKM (reads per kilobase per million
mapped reads),!?* FPKM (fragments per kilobase
per million mapped reads), and TPM (transcripts
per kilobase million).!?> RPKM and related
FPKM for paired-end sequences normalize gene
coverage through correction of differing sample
sequencing depth and RNA length. However,
RPKM has been shown to be a poor metric for
RNA abundance between samples.!?> RPKM is
calculated by dividing the read counts per feature
with a scaling factor (total number of reads in the
sample x 1079) and by the length of the gene (kb).
Within the sample, the RPKM values can be
assessed for comparative expression analysis;
however, due to the nature of the variation of
library sizes between samples, RPKM values will
not be comparable, leading to confusion in the lit-
erature and the use of RPKM.!?> TPM overcomes
this by reordering the calculation, normalizing for

gene length followed by normalization for library
sequencing depth. Therefore, the sum of all
TPMs in each sample will be the same, unlike
RPKM/FPKM. This provides the opportunity for
cross-sample expression-level comparisons. With
the size of the dimensional data generated for
gene counts, correction of statistical validity is
required; a common approach is using false dis-
covery rate (FDR) procedures to correct for mul-
tiple  tests, for example, using the
Benjamini-Hochberg method.!?¢ Such processes
are aimed at controlling the number of false posi-
tives when the null hypothesis has been incor-
rectly rejected.

Differential gene analysis

One of the most commonly used protocols with
RNA-seq data analysis is the assessment of
changes in expression of genes between sample
conditions. Several methods have been produced
to normalize and model the count data produced
from aligned short reads. Generally, the input for
these tools will be raw counts, to avoid biases
introduced through normalization. Methods to
model expression from count data include
DESeq2,!2!  Cufflinks2,11® NOISeq,!?” and
edgeR.!17 When working with transcript-level fea-
tures, a further consideration would be the change
in transcript length across samples/conditions
that would alter intra-sample calculations.!!®
Comparative analyses of techniques used for dif-
ferential expression studies have been repor
ted8>116,128,129 gnd reviewed.8%130:131 Differential
expression analysis results in lists of differentially
expressed genes (DEGs) or features and associ-
ated fold changes. Decision on biological signifi-
cance to filter the data set relative to fold change
and adjusted p-value thresholds is highly depend-
ent on the experimental design, which usually will
require manual interactive inspection of the data.
Principal component analysis (PCA) reduces the
data dimensionality down into components of
variation.132 By taking the main components and
plotting them in either two- or three-dimensional
(2D or 3D) space, samples can be visualized to
enhance interpretability. PC1 describes the
prominent variation within the data, PC2 the sec-
ond, and so on. This aids visualization of group-
ings between replicates as well as potentially
identifying sample outliers.

Transcript-level differential expression analysis
may assist in the detection of isoform changes.
Transcripts can be assembled using tools
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Figure 3. Heat map of differentially expressed genes (DEGs) in zebrafish between isolated optic fissure tissue
and dorsal retina at 56 hours post fertilization (hpf),'s? generated by R for Statistics package NMF. DEGs

were identified using DESeq2, whose output was filtered for biologically significant results using criteria of

a false discovery rate of less than 0.01 and fold change greater than 2. Resulting DESeq?2 analysis was rlog
transformed and hierarchical clustering performed on differential gene list. The z-score scale bar represents
relative expression +=2SD from the mean. Top enriched gene ontology for biological process (BP) is highlighted

for each cluster.
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including Cuffdiff2 or StringTie!33 that assemble
reads into potential transcripts, using prior knowl-
edge, but also will identify novel transcript iso-
forms, followed by comparison of expression
levels. Alternative splicing occurs in 90-95% of
genes in mammals; therefore, analysis of the alter-
native use of exons and splice sites from RNA-seq
data is of vital importance.13%135 Tools to assess
differential usage of features such as exons or
splice sites handle the information differently,
using an exon-based approach, comparing to the
overall expression of the associated gene.!36:137
Each has potential benefits and drawbacks, sum-
marized in a recent report on the assessment of
tools available.138

Batch effects can be a significant source of varia-
tion between batches of samples, resulting in
reports of false DEGs. There are a number of
approaches to correct for known or unknown
batch effects, including surrogate variable analy-
sis (SVA)54 and ComBat.13° Numerous tools have
been designed with batch effect correction stages
optional and evaluated.>> Batch effects can ulti-
mately range from increasing variability and
reducing the power of an experiment, to becom-
ing confounded with a desirable outcome and
result in misleading biological interpretation.

Data visualization

Visualization of RNA-seq data can be achieved
in several ways, similar to other forms of high-
throughput sequencing data. Genome browsers
such as IGV, UCSC,%% and GenomeBrowse
enable the user to view read alignments, high-
lighting read coverage and alternative splicing
events with Sashimi plots, and summarizing the
mapped read density over exons and junctions
on the gene model.'¥! Combined with differen-
tial expression and differential usage data, dis-
play of individual genes of biological interest at
the exon level can be used to assess potential
complications from read alignment artifacts, for
example, specific regions of the genome remain
difficult to either sequence or align to with short
read sequencing, 142143

Data exploration throughout the analysis pipeline
ensures precise results being reported. Useful
tools for summarizing data from raw or processed
sequence reads as well as alignment statistics vis-
ually include MultiQC,'%* QualiMap,!#> and
RNA-SeQC.1%6 This type of data visualization
enables querying of read alignment efficiency as

well as proportions mapped to features such as
exons, introns, and splice sites.

Biological insight

The biological significance of changes in the global
transcriptome can be investigated through path-
way enrichment of the list of DEGs/transcripts.
Two example methods to aid functional signifi-
cance assignment include (1) over-representation
analysis (ORA), which compares the list of filtered
DEGs against the annotated genome for over-rep-
resented functional assignment,!47 and (2) gene set
enrichment analysis (GSEA), which utilizes the
complete data set, ranking the entire transcriptome
according to the expression-level changes using
differing metrics.148 Both rely heavily on prior
knowledge and functional assignment to genes
through Gene Ontology terms and databases such
as MSigDB.148 Specific tools have been created for
such analysis, which invariably demonstrates gene
length bias, where larger genes have a greater
chance of showing significant changes. GOSeq, a
Bioconductor package, aims to estimate and
account for such bias.!#® Analytical tools continue
to develop; PathwaySplice addresses explicitly bias
through accounting for number of exons/junctions
and performs pathway enrichment analysis.!5°
Functional annotation data can also be readily
queried using DAVID (Database for Annotation,
Visualization, and Integrated Discovery),!3!
Panther (Protein Analysis Through Evolutionary
Relationships),!>? QuickGO,!%3 and STRING.!5*
ClueGO, a Cytoscape app, enables rapid querying
of ontology databases, producing clustered terms
in a functional network.15> GSEA requires prede-
fined collections of gene sets for analysis of the
RNA-seq ranked list data set, including Kyoto
Encyclopedia of Genes and Genomes (KEGGQG),
Reactome, and BioCarta. GSEA provides a
method for investigating changes in related sets of
genes that may provide more insightful explana-
tion than, for example, a large expression fold
change of a single gene or numerous changes in
genes with no biological theme. All genes detected
experimentally are taken into consideration, not
only those above the arbitrary cutoffs. Genes with
small changes in expression that might not have
reached the significance threshold may be of more
biological importance within the same pathways,
providing links between prior knowledge and
newly generated experimental data.

Novel genes, as well as noncoding RNAs (ncRNA)
identified in RNA-seq data sets, can present a
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challenge for functional ontology assignment.
Protein sequence homology can be readily
assessed for protein-coding transcripts using cur-
rent databases. While no standard functional
annotation route is defined for ncRNAs, data-
bases such as miRbase,!>® LNCipedia,!>” and
NONCODE!38 maintain information on specific
classes of ncRNA.

Highly similar ontologies cluster, highlighting the
overall trends and themes of the underlying bio-
logical data. The expression of significant DEGs
can be assessed through the generation of heat
maps; a visualization method for rows of data,
such as counts or expression values, related to the
mean of that row. By calculating the z-score, the
number of standard deviations from the mean
expression of a gene, each sample’s expression
can be represented through color variations.
Hierarchical clustering, a way of arranging items
in a hierarchy based upon similarity, can be used
alongside heat maps to produce a dendrogram
that shows the relationship between the rows [in
this example, genes differentially expressed dur-
ing zebrafish optic fissure fusion!?® (Figure 3)].
One-way cluster analysis will identify clustering
based upon similarity of abundant data in one
dimension, such as expression patterns of genes
(row) for example, whereas two-way clustering
will also cluster on the second data dimension, for
example, similarity of the sample profiles (col-
umn) commonly using Euclidean distances.60
The aim is to identify subsets of genes in samples
so that when one data dimension (gene) is used to
cluster another dimension (sample), clear and
significant partitions emerge.

Reproducibility

Throughout the analysis of any data set, it is criti-
cal to maintain reproducible workflows, provid-
ing detailed information on how data are
manipulated, filtered, and assessed.161:162 Even so
far as versions and dates of databases utilized are
critical to maintain the integrity of the results.
There are diverse approaches to maintaining
reusable and reproducible bioinformatics pipe-
lines such as Subversion and Git (this provides a
version control system, preserving the history of
the document). GitHub provides an open-source
online resource for project tracking, sharing, and
issue discussion. Code can also be created,
shared, and annotated similarly with Jupyter sci-
entific computing notebooks. Other options for
reproducible analysis include AWS Elastic Cloud

Computing,!3 Docker,1%% and Galaxy.19> Galaxy
provides a web-based platform for high-through-
put sequence data analysis. This platform is
accessible to users without programming experi-
ence by providing a graphical web interface to
command-line tools as well as predefined shared
workflows and parameters. Tools and pipelines
continue to develop rapidly with Galaxy adopting
many of these improvements. 166,167

Utility of RNA-seq in ophthalmology

research

Vision research has benefited significantly from
the use of RNA-seq over recent years.168
Characterization of human diseases related to the
eye can prove difficult due to the lack of high-
quality human tissue required for the analysis;
therefore, model systems, such as animals or cell-
based, provide vital resources to further our
understanding of eye development and disease.
The role of noncoding and circular RNAs in eye
disease has been the subject of a recent review.16°
Here, follow some applications in ophthalmology
and vision research.

Human retina

Transcriptome analysis of three human donor
adult healthy eyes has provided insight into which
RNAs are expressed specifically in human retinal
tissue. Farkas and colleagues identified 79,915
novel alternative splicing events that included
29,887 novel exons and 28,271 novel exon skip-
ping events with 116 potential novel genes
expressed in retina. The observations, while
highly reproducible, indicate a high level of nov-
elty in the makeup of the retinal transcriptome
that highlights the difference between species and
the importance of characterization of human tis-
sue.!’> Further comprehensive analysis of eight
normal eyes has been carried out, demonstrating
transcriptome differences between macular and
peripheral retina.!'”® Approximately, 80% of the
annotated transcriptome was reported to be
expressed in the retina, which showed signifi-
cantly different alternative splicing patterns to the
RPE, choroid, and sclera; hence, spatiotemporal
gene localization is needed. Analysis of mature
mRNAs and ncRNA such as long-intervening
ncRNAs (lincRNAs) has been shown to be
involved in numerous cellular pathways in devel-
opment and disease. Analysis of total RNA within
both fetal RPE and iPSC-derived RPE identified
over 1000 lincRNAs and 180 novel genes
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expressed in fetal RPE. The research also con-
firmed that the transcriptomes of iPSC-RPE were
comparable to fetal RPE, so enforcing the suita-
bility of these cells for vision research.17!

While global transcriptome analysis via RNA-seq
has fueled our understanding of underlying mech-
anisms of disease, ultimately it provides little
information on the basic unit of biology, the cell.
Since the development of scRNA-seq using in-
house approaches, the field has seen an increase in
the number of commercial options available.
Protocols generally involve tissue disruption,
which can lead to changes in expression profiles,
although i vivo methods of mRNA isolation from
tissue and prefiltering of cells based upon mor-
phology and function have been produced.!72-174
Post hoc PCA or hierarchical clustering of single-
cell data has been relied upon to determine cell
type classification. Recent scRNA-seq has identi-
fied up to 40 cell types of RGCs in the mouse
retina using such approaches.!?> While elucidation
of model system RGCs has been invaluable, the
need for further characterization of human cell
types remains vital. To address this, human pluri-
potent stem—derived RGCs were profiled using
scRNA-seq, showing a variable expression pattern
of common RGC-associated genes, further indi-
cating diversity within the cell population.176

Retinal dystrophies

Currently, mutations in over 75 genes can cause
retinitis pigmentosa (RP), affecting the RPE and
or photoreceptor cells, leading to progressive loss
of vision. Stem cell-based therapies offer poten-
tial treatment avenues, either replacement of reti-
nal cell types through differentiation protocols or
protection via general neuronal lineage cells.!”?
Using a rat model of progressive photoreceptor
degeneration harboring a mutation in the Mertk
gene (Royal College of Surgeons, RCS rat),
RNA-seq has been used to elucidate expression
changes post stem-cell transplantation with
human neural progenitor cells (hNPCs).178
Comparative analysis of gene expression profiles
of treated and untreated RCS rats and controls
identified 68 genes with altered expression pat-
terns due to treatment with hNPCs. Pathway
analysis revealed an enrichment of signaling
involved in phagocytic response alongside the
increase in photoreceptor cell survival. The
underlying Mertk mutation causes improper
phagocytosis of photoreceptor outer segments,
and restoration of phagocytosis by hNPCs is

encouraging. Similarly, mouse models of RP,
including the rd10 mouse harboring a mutation in
Pde6b, have been used to assess transcriptional
changes underlying photoreceptor degenera-
tion.3® Decreased expression of rod-specific genes
was associated with a clear increase in Muller-
specific gene expression, although other cell type-
specific genes were dysregulated.3® Interestingly,
alternative splicing of 284 genes was altered in the
degenerated retina, with predominantly increased
exon inclusion.

Age-related macular degeneration

Understanding the pathogenesis of age-related
macular degeneration (AMD) has been challeng-
ing due to the multifactorial etiology.!” AMD is
characterized by RPE degeneration and conse-
quent photoreceptor cell death. Although impli-
cated in AMD, RPE phagocytosis has only
recently been demonstrated to be dysfunctional
by transcriptome analysis of RPE cells isolated
from post-mortem AMD and normal age-
matched control human eyes.180 To explore the
disease progression, rat models of AMD were
assessed for temporal changes in retinal transcrip-
tomes. Enrichment ontology analysis has pro-
vided insight into cellular differentiation and
developmental processes, all differential expres-
sion events were downregulated in comparison to
controls. Gene clusters identified differing gene
sets at the various disease stages linked to apopto-
sis.181 Targeted treatment of the exudative form
of AMD through inhibition of vascular endothe-
lial growth factor (VEGF) signaling using ascor-
bate-based targeted DNA hydroxymethylation
has been validated via characterization of the
resultant transcriptome in RPE cells (human
fetal, rat and cell line ARPE-19) showing signifi-
cant reduction in VEGF expression.182

Corneal dystrophies

Corneal dystrophies are a group of genetic condi-
tions that result in sight loss from various patterns
of corneal opacity.!®3 Posterior polymorphous
corneal dystrophy (PPCD) is a rare autosomal
dominant disorder characterized by changes in
Descemet membrane and the endothelial cell
layer leading to decreased vision secondary to
corneal edema.!83 Although mutations in tran-
scription factors OVOL2 (type 1) and ZEBI1 (type
3) account for approximately 40% of all PPCD
cases, the transcriptomes of PPCD endothelium
and cultured human primary corneal endothelial
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cells were assessed to further elucidate potential
biomarkers.184185 Characterization of DEGs asso-
ciated with ZEB1 and OVOL2 identified addi-
tional genes involved in proliferation, cell
adhesion and migration, and cell morphology,
which can be used to identify candidate genes for
genetically unresolved patients.

Glaucoma

Success in glaucoma treatment can be determined
by the level of fibrotic encapsulation post trab-
eculectomy surgery.!8 To further understand the
fibrotic response, RNA-seq has been used to iden-
tify dysregulated genes between primary fibrotic
and nonfibrotic fibroblast cell lines isolated from
glaucoma patients.187 Genes involved in inflamma-
tion and apoptosis were significantly upregulated in
the fibrotic cell type, including RELB, PPP1R13L.
MYOCD (a critical cofactor of serum response
factor regulating smooth muscle cell differentia-
tion). PRG4 was upregulated in nonfibrotic cells
and has been associated with high levels of hyalu-
ronic acid and scar-less fetal wound healing.1%® In
total, 246 genes were differentially expressed in
fibrotic cell lines compared to nonfibrotic, provid-
ing an insight to a distinct fibrosis gene signature.

Prospects

RNA-seq is now becoming the standard method
of transcriptome analysis as both the tools and
technology continue to develop. Methods of anal-
ysis differ significantly and validation of results
using different tools remains uncertain. As more
comparative studies are evolving, more appropri-
ate use of tools will be forthcoming. Continued
development of RNA-seq technologies has
resulted in the ability to analyze minimal amounts
of starting material, even from older fixed and
embedded archived tissue. Development of single-
cell techniques continues to be a highly dynamic
area of research.!89-1°! FElucidation of cellular
transcriptomes, in tissue-related context, will
provide an insight into the regulation of gene
expression in assumed identical cell types.
Combined with temporal experimental designs,
analysis of thousands of cells at a time, using
techniques such as DROP-seq and InDrops, can
provide detailed analysis of cellular subgroups
within systems of interest.192:193 Recent adaption
of scRNA-seq has allowed the reconstruction of
cell lineage histories in model systems.194-198
Such large-scale informatics will drive knowledge

of RNA expression through developmental stages
and tissue types as well as providing the technol-
ogy to approach many disease-related issues.

With the availability of open-access sequence data
in online repositories including NCBI SRA and
EMBL ENA, combined with the increase in com-
puting power, increasing the speed of pipeline
analysis, the amount of knowledge to be gained
from transcriptome analysis is increasing.
Combined with other ‘omics data, RNA-seq anal-
ysis has the potential to link gene expression with
genomic features such as epigenetic changes, DNA
sequence alterations, and protein interactions. The
Department of Health and Social Care’s 100,000
Genomes Project, whose aim was to sequence
75,000 genomes of patients with rare diseases and
cancer,199200 concomitantly collected RNA along-
side the DNA samples. This initiative will result in
increased diagnostic rates and the discovery of
novel disease-causing variants, while also provid-
ing an extensive wealth of information on tran-
scriptomes from individuals with varied genetic
backgrounds. For eye disease, the transcriptome
will provide insights into how genes alter the devel-
opment or function of the eye and has the potential
to provide researchers with novel targets for thera-
peutic strategies.
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