Loss of the crumbs cell polarity complex disrupts epigenetic transcriptional control and cell cycle progression in the developing retina

Abstract

The crumbs cell polarity complex plays a crucial role in apical-basal epithelial polarity, cellular adhesion, and morphogenesis. Homozygous variants in human CRB1 result in autosomal recessive Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP), with no established genotype-phenotype correlation. The associated protein complexes have key functions in developmental pathways; however the underlying disease mechanism remains unclear. Using the oko meduzym289/m289 (crb2a-/-) zebrafish, we performed integrative transcriptomic (RNA-seq data) and methylomic (reduced representation bisulphite sequencing, RRBS) analysis of whole retina to identify dysregulated genes and pathways. Delayed retinal cell specification was identified in both the crb2a-/- zebrafish and CRB1 patient-derived retinal organoids, highlighting dysfunction of cell cycle modulation and epigenetic transcriptional control. Differential DNA methylation analysis revealed novel hypermethylated pathways involving biological adhesion, Hippo and transforming growth factor β (TGFβ) signalling. By integrating gene expression with DNA methylation using functional epigenetic modules (FEM), we identified 6 key modules involving cell cycle control and disturbance of TGFβ, BMP, Hippo, and SMAD protein signal transduction pathways, revealing significant interactome hotspots relevant to crb2a function, confirming the epigenetic control of gene regulation in early retinal development and points to a novel mechanism underlying CRB1-retinopathies.

Publication
Journal of Pathology
Nicholas Owen
Nicholas Owen
Research Fellow and Bioinformatician

My interests include rare disease translational research using ‘omics analysis.